Simplicial complexes triangulating infinite-dimensional manifolds
نویسندگان
چکیده
منابع مشابه
Simplicial moves on complexes and manifolds
Here are versions of the proofs of two classic theorems of combinatorial topology. The first is the result that piecewise linearly homeomorphic simplicial complexes are related by stellar moves. This is used in the proof, modelled on that of Pachner, of the second theorem. This states that moves from only a finite collection are needed to relate two triangulations of a piecewise linear manifold...
متن کاملTriangulated Infinite-dimensional Manifolds
In this paper we extend almost all the results on infinite-dimensional Fréchet manifolds to apply to manifolds modeled on some 2̂ ( = {#£^1 at most finitely many of the coordinates of x are nonzero } ) and we show (Theorem 14) that each /^-manifold has a unique completion to an /2-manifold. (We use h to stand for the Hubert space of all square-summable sequences of some infinite cardinality 31. ...
متن کاملinfinite dimensional garch models
مدلهای گارچ در فضاهای هیلبرت پایان نامه حاضر شامل دو بخش می باشد. در قسمت اول مدلهای اتورگرسیو تعمیم یافته مشروط به ناهمگنی واریانس در فضاهای هیلبرت را معرفی، مفاهیم ریاضی مورد نیاز در تحلیل این مدلها در دامنه زمان را مطرح کرده و آنها را مورد بررسی قرار می دهیم. بر اساس پیشرفتهایی که اخیرا در زمینه تئوری داده های تابعی و آماره های عملگری ایجاد شده است، فرآیندهایی که دارای مقادیر در فضاهای ...
15 صفحه اولEmbedding graphs into two-dimensional simplicial complexes
We consider the problem of deciding whether an input graph G admits a topological embedding into a two-dimensional simplicial complex C . This problem includes, among others, the embeddability problem of a graph on a surface and the topological crossing number of a graph, but is more general. The problem is NP-complete when C is part of the input, and we give a polynomial-time algorithm if the ...
متن کاملThe maximum diameter of pure simplicial complexes and pseudo-manifolds
A pure simplicial complex of dimension d − 1 (or a (d − 1)-complex, for short) is any family C of d-element subsets of a set V (tipycally, V = [n] := {1, . . . , n}). Elements of C are called facets of C and any subset of a facet is called a face. More precisely, a k-face is a face with k + 1 elements. Faces of dimensions 0, 1, and d − 2 are called, respectively, vertices, edges and ridges of C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 1988
ISSN: 0166-8641
DOI: 10.1016/0166-8641(88)90073-9